(300-3x^2)/(2x-20)=0

Simple and best practice solution for (300-3x^2)/(2x-20)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (300-3x^2)/(2x-20)=0 equation:



(300-3x^2)/(2x-20)=0
Domain of the equation: (2x-20)!=0
We move all terms containing x to the left, all other terms to the right
2x!=20
x!=20/2
x!=10
x∈R
We multiply all the terms by the denominator
(300-3x^2)=0
We get rid of parentheses
-3x^2+300=0
a = -3; b = 0; c = +300;
Δ = b2-4ac
Δ = 02-4·(-3)·300
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3600}=60$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*-3}=\frac{-60}{-6} =+10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*-3}=\frac{60}{-6} =-10 $

See similar equations:

| 2x-9=9x+2 | | 4k2+8k=0 | | 3x-5=(12+4x)2 | | 6x=2(x+14 | | |3x+5|+4=2 | | 3-(x-2)=3+(-1)(x+(-2) | | t=2-22t-3(1-t) | | (4x+16)6x=180 | | 2(6x-1)+2(2x+)=120 | | -2=n+(-6) | | (4x+16)+(6x+1)=180 | | -9=m/8-12 | | −24−8p=4p | | 15=4a+5+2 | | 7x+1=7;4³x=1;15x=-1;3x+27-81=0; | | X^y=32 | | x+1/2=-2 | | 2p-7=-3 | | (16x-55)+(5x-13)=90 | | 9x^2+3x/4+2=0 | | 8x-2=4(x+4)+6x | | 9x-4x-8=0 | | 11x+14x=50+125-75 | | 3x•2=7 | | 8x-8+3(x-8)=3x+2 | | u/3+3=5 | | (x^2+x)+(2x+7)=11x-5 | | 12x-4x+2x=47+13-10 | | 5(2y-3)=-5 | | 2(x+3)=2(3+x) | | 12x-4x+2x=47=13-10 | | r=4+2r-8 |

Equations solver categories